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In this paper we present a thorough study of the theory of a pair of qubits, whose
Hilbert space can be identified with C| 2 ⊗ C| 2. Given an hermitian operatorρ of trace
1 in C| 2 ⊗ C| 2 we focus on the following Problems:Problem 1: Find conditions that
guarantee thatρ is a state, that is, positive semidefinite.Problem 2: Find conditions
that guarantee that a given stateρ is separable, or thatρ is a convex combination of
products of one-particle states. The language we develop for our investigation makes
use of the observation that C| 2 ⊗ C| 2 carries representations of the special unitary group
SU(2) in two dimensions and of the direct product of this group by itself. We introduce
a new type of observable calledBell observable(section 5) and a new measure of
entanglement calledconcurrence, which is closely related to the concurrence introduced
by Wootters (Physical Review Letters (1998)80, 2245–2248) (section 8). The work has
been inspired by the works of Wootters (Physical Review Letters (1997)78, 5022–5025;
Physical Review Letters (1998)80, 2245–2248) and members of the Horodecki family
(cf Horodecki and Horodecki, Physical Review A (1996)54, 1838–1843; Horodecki
et al., Physics Letters A (1996a)223, 1–8; Physics Letters A (1996b)222, 21–25) and
reproduces some of their results.

1. INTRODUCTION

A quantum bitorqubit is a quantum mechanical system whose pure states are
in one-to-one correspondence with the rays in a two-dimensional Hilbert space en-
dowed with a distinguishedorthonormalbasis (|0〉, |1〉) (called thecomputational
basis). The situation can be mimicked by choosing for the Hilbert space simply
C| 2 and for the members of the distinguished basis the standard basis|0〉 = (1, 0)
and |1〉 = (0, 1). Typically a qubit is a spin-1/2 particle, a two-level atom or a
polarized photon.

In recent years a great deal of interest has been focused on the theory of apair
of qubits. The mathematical structure underlying the physics of this simplest of
all compositequantum mechanical systems is far from being trivial. This is by no
means surprising, considering that such counterintuitive phenomena as the EPR
paradox must be describable with the help of the mathematical language associated
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with such a system. However, owing to the effort of many mathematically sophis-
ticated researchers such as the members of the Horodecki family (Horodecki and
Horodecki, 1996; Horodeckiet al., 1996a,b) and W. K. Wootters (1997, 1998),
considerable progress has been made in uncovering the salient features of the
mathematical structure underlying the system consisting of a pair of qubits. In this
paper we present in a unified fashion some mathematical results that have been
unearthed by these researchers and add some of our own.

Inspired by the pioneering work of Horodecki and Horodecki (1996) and
Horodeckiet al.(1996a,b) we investigated in an earlier paper (Kummer, 1999) the
state space of a pair of qubits (spin-1/2 particles). In the present paper we widen
and deepen our investigation.

The Hilbert space of a pair of qubits can be identified with C| 2⊗ C| 2. The two
major questions that we pursue in this paper are

Question 1: What conditions guarantee that a given hermitian operator (of
trace 1) in C| 2⊗ C| 2 is a state, that is, positive semidefinite?

Question 2: What conditions guarantee that a given state isseparable, that is,
it can be represented as a convex combination of products of one-particle states.

In order to tackle these questions it is useful to observe that C| 2⊗ C| 2 carries
a representation of the direct productU1×U1 of the special unitary groupU1 =
SU(2) with itself.

In section 2 we introduce those fundamentals of the theory of the groupU1

that are needed for the arguments in this paper. We also describe an interesting
connection between a modified version of the so-calledBell basisin C| 2⊗ C| 2 and
that basis of the spaceM2 of all complex 2× 2 matrices that consists of the
identity matrix and the three Pauli matrices.

The answer to both of the above questions can be given in terms of the
invariants of an hermitian operator in C| 2⊗ C| 2 with respect to the groupU1×U1.
These invariants are encapsulated in thecanonical form, which we introduce in
section 3 (Definition 3.1).

In section 4 we construct positive semidefinite hermitian operators by squar-
ing a general hermitian operator. This method immediately reveals a number of
symmetries of the two-particle state space (Corollary 4.4). In addition we describe
in this section the structure of a general pure state. The orbits of pure states under
the groupU1×U1 can be labeled by a single parameterξ that varies over the
interval [0, 1].ξ is called theconcurrenceand measures the degree to which the
two qubits are entangled after they have been prepared into the pure state.

Section 5 presents some results on separable states. Horodeckiet al.(1996a)
proved that a state of a pair of qubits is separable iff its partial transposition is
still positive semidefinite. We express this condition in a form that is different
and better adapted to the way we represent the hermitian operators in C| 2⊗ C| 2

(Theorem 5.2). Another characterization of a separable state that makes use of the
concept of aBell observable(Definition 5.5) is given by Theorem 5.6.
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Section 6 is devoted to the so-called states withmaximal disorder of the
subsystems or mds states(also called T states or generalized Bell states) introduced
by Horodeckiet al. (1996a). They can be alternatively described as states whose
reduced density operators are given by1

21or as states that areinvariant with respect
to time reversal. These states are particularly well-adapted to the groupU1×U1,
because they can be brought to diagonal form by conjugation with an element
of that group. Some results of this section can be found in a different form in
Horodeckiet al. (1996b).

In section 7 we investigate the matrices of a hermitian operatorh relative to two
bases: the Bell basis and an eigenbasis of its mds component (cf. Definition 4.3).
It turns out that time reversal ofh is represented bycomplex conjugation(or
transposition) of its matrix relative to theBell basis(Theorem 7.1). Denoting the
matrix of an operatorρ of trace 1 relative to an eigenbasis of its mds component
by [ρ]ψ the condition forρ to be a state now takes the form of the principal
subdeterminants of [ρ]ψ having to be nonnegative (Theorem 7.3). We also give a
necessary condition for a state to be nonseparable (Theorem 7.4).

In section 8 we propose a new measure of entanglement for mixed states that
generalizes theconcurrencedefined for pure states in section 4. Our extension
of the concurrence function (Definition 8.3) to mixed states slightly differs from
the one defined by Wootters (1998), although the two functions agree on all mds
states.

Section 9 exhibits some examples that are partially adapted from Horodecki
et al. (1996a).

In section 10, we use the mathematical language developed in the bulk of
the paper to express the answers to some questions concerning a pair of spin-1/2
particles.

2. PRELIMINARIES ON THE SPECIAL UNITARY GROUP:
THE PAULI MATRICES AND THE (MODIFIED) BELL-BASIS

The Hilbert space of one qubit is C| 2 and the set of all linear operators in C| 2

can be identified with the algebraM2 of all complex 2× 2 matrices.M2 can be
made into a Hilbert space by introducing the sesquilinear form:

〈a, b〉 = trace(a∗b) a, b ∈M2 (2.1)

M2 carries an irreducible representation of the direct productU1×U1 of the
special unitary groupU1 = SU(2) by itself.U1 is defined as the group of all 2× 2
matrices of the form

u =
[
α β

−β̄ ᾱ

]
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whereα, β ∈ C| such that|α|2+ |β|2 = 1. The complex conjugation

u 7→ ū u ∈ U1

is an automorphism ofU1. In fact it is aninner automorphism implemented by
conjugation with the element

u0 =
[

0 1
−1 0

]
(2.2)

Indeed, one easily verifies that

u0 · u · u∗0 = ū u ∈ U1

U1×U1 acts onM2 by the following rule

(u1, u2)(a) = u1 · a · u∗2 a∈M2 (u1, u2) ∈ U1×U1

The Hilbert space of apair of qubits, C| 2⊗ C| 2, is also the carrier space of a
representation of the direct productU1×U1, defined by

(u1, u2) 7→ u1⊗ u2 (u1, u2) ∈ U1×U1 (2.3)

It turns out that the two representations ofU1×U1 areequivalent, that is,
there exists an isomorphism ofU1×U1 modules between C| 2⊗ C| 2 andM2.

Proposition 2.1. The linear mapϕ : C| 2⊗ C| 2→M2 defined on decomposable
vectors by

ϕ(x ⊗ y) = x · (u0 · y)t x, y ∈ C| 2

is an isomorphism of U1 modules and an isometry. Here we think of the elements
of C| 2 as2× 1 matrices and the superscript t symbolizes the transpose.

Proof: First of all (x, y) 7→ x · (u0 · y)t is clearly bilinear and thereforeϕ can be
extended as a linear map to all of C| 2⊗ C| 2. Identifying thecomputational basisof
a qubit (| 0〉, |1〉) with the standard basis in C| 2 we have forj , k = 0, 1

ϕ(| j 〉 ⊗ u∗0|k〉) = | j 〉〈k|,
which shows that all four matrix units are in the range ofϕ, making it evident
thatϕ is surjective. Furthermore we have for all (u1, u2) ∈ U1×U1 and for all
x, y ∈ C| 2

ϕ((u1, u2) (x ⊗ y)) = u1 · x · (u0 · u2 · y)t = u1 · x · (u2 · u0 · y)t

= u1 · x · (u0 · y)t · u∗2 = u1 · ϕ(x ⊗ y) · u∗2
= (u1, u2)(ϕ(x ⊗ y))
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and thusϕ is an isomorphism ofU1×U1 modules. Finally, we have for allx,
y ∈ C| 2

‖ϕ(x ⊗ y)‖2 = ‖x‖2 trace
(
u0yy∗u∗0

) = ‖x‖2‖y‖2 = ‖x ⊗ y‖2

proving thatϕ is an isometry. ¤

There is a natural injection ofU1 into the direct productU1×U1 given byu 7→
(u, u), u ∈ U1.

Composing this injection with the respective (irreducible) representations of
U1×U1 onM2 and on C| 2⊗ C| 2 we obtain a representation ofU1 that is the direct
sum of the identity representation and a representation by rotation matrices. A
distinguished basis inM2 adapted to this decomposition ofM2 into irreducible
subspaces consists of the identity matrix1= [1

0
0
1] supplemented by the three Pauli

matrices:

σ1 =
[

0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
(2.4)

1 spans an invariant subspace carrying the identity representation, whereas
the three Pauli matrices span a subspace that carries the representation ofU1 by
rotation matricesR(u). AccordinglyR(u) is defined via the equation

uσku∗ =
3∑

j=1

R(u) jkσ j , k = 1, 2, 3 u ∈ U1 (2.5)

Using the inner product onM2 we can isolate the (j , k)-th matrix entry:

R(u) jk = 1

2
〈σ j , uσku∗〉 = 1

2
trace(σ j uσku∗), j , k = 1, 2, 3 (2.6)

Explicitly R(u) is given by

R(u) =
 Re(α2− β2) Im(α2+ β2) −2Re(αβ)
−Im(α2− β2) Re(α2+ β2) 2Im(αβ)

2Re(αβ̄) 2Im(αβ̄) (|α|2− |β|2)


Sinceϕ is an isometric isomorphism ofU1 modules, the image of the the

orthonormal basis (
1√
2

1,
1√
2
σ1,

1√
2
σ2,

1√
2
σ3

)
(2.7)

inM2 underϕ−1 will be an orthonormal basis in C| 2⊗ C| 2 that is adapted to the
decomposition of C| 2⊗ C| 2 into irreducibleU1 submodules. What is this basis? The



P1: GCQ/GGN/GCX/GIR/GAY/GFQ P2: GCQ

International Journal of Theoretical Physics [ijtp] PP108-299768 March 27, 2001 12:53 Style file version Nov. 19th, 1999

1076 Kummer

answer is as follows: It is constituted by the following set of orthonormal vectors
in C| 2⊗ C| 2:

φ0 = 1√
2

(|01〉 − |10〉)

φ1 = i√
2

(|00〉 − |11〉)

φ2 = 1√
2

(|00〉 + |11〉)

φ3 = −i√
2

(|01〉 + |10〉) (2.8)

(Here we use the customary abbreviation| jk〉 := | j 〉 ⊗ |k〉, ( j , k = 0, 1) for
the members of thecomputational basisof a pair of qubits.)

Thus our basis agrees up to phase factors with the well-knownBell basis
and we shall refer to it using this name. Our Bell basis is closely related to what
Wootters (1997) calls the “magic basis.” The precise relationship between the
distinguished basis inM2 and the Bell basis in C| 2⊗ C| 2 (as defined by us) is given
by the following equations:

ϕ(
√

2φ0) = ϕ(| 01〉)− ϕ(|10〉) = |0〉〈0 | + |1〉〈1| = 1

ϕ(
√

2iφ1) = (ϕ(|11〉)− ϕ(| 00〉) = |1〉〈0 | + | 0〉〈1| = σ1

ϕ(
√

2iφ2) = i (ϕ(|11〉)+ ϕ(| 00〉)) = i (|1〉〈0 | − | 0〉〈1|) = σ2

ϕ(
√

2iφ3) = (ϕ(| 01〉)+ ϕ(|10〉)) = |0〉〈0 | − |1〉〈1| = σ3

Therefore

ϕ−1

(
1√
2

1,
1√
2
σ1,

1√
2
σ2,

1√
2
σ3

)
= (φ0, iφ1, iφ2, iφ3) (2.9)

We now deduce from Proposition 2.1 that

(u⊗ u)φ0 = φ0

and

(u⊗ u)φk =
3∑

j=1

R(u) jkφ j , k = 1, 2, 3

where theR(u) jk values are given by formula (2.6).
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3. HERMITIAN OPERATORS, CANONICAL FORM

The real subspace ofM2 spanned by the Pauli matrices and1 coincides
with the subspaceH2 of all hermitian 2× 2 matrices. Identifying an hermitian
operator with its matrix with respect to the computational basis we shall think
of the elements ofH2 as (hermitian) operators in C| 2. Accordingly an hermitian
operatorh ∈ H2 can be written as

h(γ , r ) = 1

2
(γ1+ r · σ ), (3.1)

whereγ = trace(h) is a real number,r = (r1, r2, r3) is a real 3-vector, andr · σ
is defined byr · σ =∑3

j=1 r jσ j . From (2.5) we deduce thath(γ , r ) transforms
under conjugation by elements of the groupU1 according to the formula

uh(γ , r )u∗ = h(γ , R(u)r ), u ∈ U1 (3.2)

The spectrum ofh(α, r ) is given by

sp(h(γ , r )) =
{

1

2
(γ − ‖r‖), 1

2
(γ + ‖r‖)

}
Therefore the positive coneH+2 ofH2 can be described as

H+2 = {h(γ , r ) | γ ≥ 0 & ‖r‖ ≤ γ }
Denoting byH1

2 the set of all hermitian operators of trace 1 a state of a qubit
is described by an elementρ(r ) = h(1, r ) of thestate space

H1
2 ∩H+2 = {ρ(r ) | r ∈ B3}

whereB3 denotes the unit ball inIR3. In fact the mapr 7→ ρ(r ) is an affine bijection
of B3 ontoH1

2 ∩H+2 . This implies thatρ(r ) is precisely apure stateof the 1-qubit
system (i.e., a projection) ifr belongs to the unit sphereS2. Indeed, one easily
checks thatρ(r )2 = ρ(r ) iff ‖r‖ = 1.

The representation (2.3) of the groupU1×U1 in C| 2⊗ C| 2 induces a represen-
tation ofU1×U1 in the real vector spaceH4 = H2⊗H2 of all hermitian 2-qubit
operators by conjugation. Accordingly we have an analogous decomposition of an
elementh ∈ H4 into irreducible components:

h(γ , r , s, T) := 1/4

(
γ (1⊗ 1)+ r · σ ⊗ 1+ 1⊗ s · σ +

3∑
j ,k=1

t jkσ j ⊗ σk

)
(3.3)

Here T = (t jk) is a real 3× 3 matrix, r and s are real 3-vectors andγ =
trace(h) again.h(γ , r , s, T) transforms under conjugation by elements of the group
U1×U1 via the formula

(u1⊗ u2)h(γ , r , s, T)
(
u∗1 ⊗ u∗2

) = h(γ , R(u1)r , R(u2)s, R(u1)TR(u2)∗)
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We writeh(γ2, r2, s2, T2) ∼ h(γ1, r1, s1, T1), provided the two hermitian op-
erators are conjugate under the groupU1×U1 and we say that the two operators
areequivalentor belong to the same orbit. By a judicious choice of (u1⊗ u2) ∈
U1×U1 we can achieveR(u1)TR(u2)∗ = ±D whereD = diag(µ1, µ2, µ3) and
µ1 ≥ µ2 ≥ µ3 ≥ 0 are the three singular values ofT , that is, the eigenvalues of
the matrix [T ] = (T∗T)

1
2 .

Definition 3.1. A canonical formfor the hermitian operatorh(γ , r , s, T) is any
hermitian operatorh(γ , r ′, s′,±D) ∼ h(γ , r , s, T) where D = diag(µ1, µ2, µ3)
is the diagonal matrix whose diagonal entries are the three singular values ofT in
descending order.

Proposition 3.2(Existence of a canonical form). Given any hermitian operator
h(γ , r , s, T), there exists a canonical form h(γ , r ′, s′, εD) with ε ∈ {+1,−1}.

If detT > 0 thenε = +1 and ifdetT < 0 thenε = −1.
If detT = 0 then ε can be chosen to be+1 or −1, whereby the vectors

r ′ and s′ in general will depend on the choice ofε. More precisely, if h(γ ,
r ′, s′, εD) is a canonical form of h(γ , r , s, T) then so is h(γ , F3r ′, s′,−εD),
where F3 = diag(−1,−1, 1) denotes the180◦ flip about the third coordinate
axis.

Proof: (i) detT > 0. By the singular decomposition theorem (cf. Horn and
Johnson, 1985) there exist rotation matrices (R1, R2) such thatR1TR∗2 = D. Let
uk ∈ U1(k = 1, 2) be such thatR(uk) = Rk, k = 1, 2. Then puttingr ′ = R1r and
s′ = R2s, we have

(u1⊗ u2)h(γ , r , s, T)(u∗1 ⊗ u∗2) = h(γ , R1r , R2s, D) = h(γ , r ′, s′, D)

and thush(γ , r , s, T) ∼ h(γ , r ′, s′, D).
(ii) detT < 0. In this case the singular decomposition theorem yields a pair of

rotation matrices (R1, R2) such thatR1TR∗2 = −D. The remainder of the argument
is the same.

(iii) det T = 0. In this case the singular decomposition theorem gives us
again a pair of rotation matrices (R1, R2) such thatR1TR∗2 = D and therefore
F3R1TR∗2 = −D. Puttingr ′ = R1r ands′ = R2s we get

h(γ , r , s, T) ∼ h(γ , r ′, s′, D) ∼ h(γ , F3r ′, s′,−D)

On the other hand if we putr ′ = F3R1r ands′ = R2s we obtain

h(γ , r , s, T) ∼ h(γ , r ′, s′,−D) ∼ h(γ , F3r ′, s′, D) ¤
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The question arises to what extent the vectorsr ′ ands′ that occur in a canonical
form areunique. To answer this question we introduce thestabilizer

HD := {(R1, R2) ∈ SO(3)× SO(3) | R1DR∗2 = D
}

of D. The following proposition is immediate.

Proposition 3.3. Let h= h(γ , r , s, T) be an hermitian operator and let h(γ , r ′,
s′, εD) be a canonical form. Then the most general canonical form of h (with the
same value ofε) is given by h′ = h(γ , R1r ′, R2s′, εD), where(R1, R2) varies over
the stabilizer HD.

The stabilizerHD is actually a subgroup of the groupG× G whereG is the
commutant group, namely the group of all rotations that commute withD:

G := {R ∈ SO(3) | RD= DR}
Indeed, it follows from Proposition A.2 (of Appendix A) that

HD = {(R1, R2) ∈ G× G | R1 ≡ R2 modG′} (3.4)

whereG′ denotes theinvariance group, namely the group of all rotations that leave
D fixed by multiplication from the left:

G′ := {R ∈ SO(3) | RD= D}
Note thatG′ is a normal subgroup ofG (cf. Proposition A.2). The invari-

ance groupG′ depends on the rank ofD, which of course coincides with the
rank of T . In caseT has rank 2 or 3,G′ is the trivial group that in view of
(3.4) implies thatHD = 1(G) := {(R, R) | R ∈ G}. In caseT has rank 1,G′

coincides with the groupSO1(2) of all rotations about the first coordinate axis.
(More generally we shall use the symbolSOk(2), k = 1, 2, 3, to denote the group
of all rotations about thekth coordinate axis). Finally ifT = 0 thenG′ = G =
SO(3).

The commutant groupG depends on the degeneracy of the singular values.
If all three singular values are different then

G = {F0, F1, F2, F3)

where

F1 = diag(1,−1,−1)

F2 = diag(−1, 1− 1)

F3 = diag(−1,−1, 1)
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are the 180◦ flips about the three coordinate axes andF0 = I is the identity matrix.
Clearly in this special caseG is an instance of thefour-groupV. The following
table summarizes the situation:

Rank of T Possible commutant group G Invariance group G ′

3 V , S̃O3(2), S̃O1(2), SO(3) {I }

2 V or S̃O3(2) {I }

1 S̃O1(2) SO1(2)

0 SO(3) SO(3)

HereS̃Ok(2), k = 1, 3 stands for the subgroup of the rotation groupSO(3)
generated bySOk(2) andF2.

As we shall see the canonical form turns out to be useful for the characteri-
zation of the positive coneH+4 ⊂ H4.H+4 is a self-dual cone relative to the trace
inner product:

〈h, h′〉 = trace(hh′), h, h′ ∈ H4 (3.5)

For the hermitian operators of trace 1 we use the symbolρ:

ρ = ρ(r , s, T) = h(1, r , s, T)

The setH1
4 of all hermitian operators of trace 1 constitutes a hyperplane

in H4. A hermitian operator that belongs to the intersectionH+4 ∩H1
4 is a state

of the 2-qubit system. Thestate spaceS = H+4 ∩H1
4 is a compact convex set

whose extreme points are the one-dimensional projections, thepure states. A
state is calledseparableprovided it belongs to the convex hull of all pure states
of the formρ(r )⊗ ρ(s), whereρ(r ) andρ(s) (r , s∈ S2) are 1-qubit pure states,
that is, projections in one-particle space C| 2. In the usual formulation of Quantum
Mechanics there corresponds to each state astate in the physical sense, which can
be thought of as a catalogue containing the total information about the system.
We ascribe to the system a pure state provided we possess maximal information
about it. We ascribe to the system a separable state provided the two qubits are
classically correlated.

We can now reformulate the two central problems that we address in this
paper as follows:

Problem 1: Describe conditions that guarantee that a given hermitian operator
ρ = ρ(r , s, T) of trace 1 is a state.

Problem 2: Describe conditions that guarantee that a given stateρ = ρ(r , s, T)
is a separable state.
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Definition 3.4. Supposeρ = ρ(r , s, T) is a state of a pair of qubits. The 3-vectors
r ands are called theone-particle vectorsand the 3× 3 matrixT = Tρ is called
the correlation matrixof ρ. The singular valuesµ1 ≥ µ2 ≥ µ3 of Tρ are called
thecorrelation valuesof the stateρ.

The physical significance of the one-particle vectors becomes clear if we
compute thereduced states

ρ1 = trace2ρ(r , s, T) = 1

2
(1+ r · σ ) = ρ(r ) (3.6)

and

ρ2 = trace1ρ(r , s, T) = 1

2
(1+ s · σ ) = ρ(s) (3.7)

Since ρ(r ) and ρ(s) are one particlestateswe immediately obtain the
following:

Proposition 3.5. If ρ = ρ(r , s, T) is a state thenr , s∈ B3.

In a subsequent section we shall sharpen this result by imposing a condition
on the correlation matrixT also (cf. Corollary 6.4).

The one-particle vectorsr and s encapsulate the information we possess
about the two individual constituent qubits after the system has been prepared into
the stateρ. This information is minimal ifr = s= 0. Following Horodecki and
Horodecki (1996) we call a state of the formρ = ρ(0, 0, T) a state of maximal
disorder of the subsystemsor anmds state. Likewise we call a general operator of
the formh = h(γ , 0, 0, T) anmds operator. Note that the mds states can also be
characterized as those states of the pair of qubits that areinvariant with respect to
time reversal.

What about the physical significance of the correlation matrixT? It is related
to the measurement of observables of typea · σ ⊗ b · σ wherea, b ∈ IR3 areunit
vectors. In the case of a pair of spin-1/2 particles, measuring the observablea · σ ⊗
b · σ means the simultaneous measurement of the spin component of Particle 1 in
directiona and the spin component of Particle 2 in directionb. The expectation
value of this observable in the stateρ = ρ(r , s, T) is

〈ρ , a · σ ⊗ b · σ 〉 = a · T b (3.8)

In particular the (j , k)-th entry ofT is given by

t jk = 〈ρ , σ j ⊗ σk〉 (3.9)
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Since the eigenvalues ofa · σ ⊗ b · σ are±1 we can conclude that the entries
of a correlation matrix must lie in the interval [−1, 1]. Substituting in (3.9) for the
stateρ its canonical formρ ′, we obtain the following.

Proposition 3.6. The correlation values of a state lie in the interval[0, 1].

Later we shall sharpen this result considerably (cf. Theorem 6.2 (2)).
Finally before leaving this section we should mention that both problems

described above have been completely solved for mds operators (Horodecki and
Horodecki, 1996; Horodeckiet al., 1996a,b).

4. THE SQUARING OF AN OPERATOR AND PURE STATES

In this section we turn toward the question of how to construct hermitian
operators that are states. As is well-known, by squaring any hermitian operators
we obtain a positive semidefinite operator and every positive semidefinite operator
is obtained this way. Let us look first at the case of one qubit.

We get an arbitrary state by squaring an hermitian operator of the Form (3.1)
and making sure that the result has trace 1. In the case of one qubit we obtain

h(γ , r )2 = h

(
1

2
(γ 2+ ‖r‖2), γ r

)
(4.1)

Theorem 4.1. Let r be a 3-vector with‖r‖ ≤ √2. Let γ0 =
√

2− ‖r‖2. Then
ρ(γ0r ) is a state and every state can be obtained in this way.

Since the assignmentr 7→ γ0r maps the ball of radius
√

2 into the unit ball
(leaving the unit sphere pointwise fixed) this theorem expresses in an indirect way
the familiar result thatρ(r ) is a state iff‖r‖ ≤ 1. Using Formula (4.1) we also can
rederive the result thatρ(r )2 = ρ(r ) iff ‖r‖ = 1. Thus in the case of one qubit the
method of squaring yields nothing new. However, in the case of a pair qubits the
same method yields some nontrivial results.

Theorem 4.2. Given any triple(r , s, T), wherer andsare 3-vectors and T is a
3× 3 matrix such that

‖r‖2+ ‖s‖2+ trace(T∗T) ≤ 4

(This is a ball of radius2 in 15-dimensional space), the operator

ρ = ρ
(

1

2
(γ0r + Ts),

1

2
(γ0s+ T∗r ),

1

2
(γ0T − cofac(T)+ | r >< s| )

)
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whereγ0 is defined by

γ0 =
√

4− ‖r‖2− ‖s‖2− trace(T∗T)

is a state and every state is obtained this way. Here cofac(T) stands for the matrix
whose( j , k)-th entry is the cofactor of the( j , k)-th entry of T .

Proof: For the proof we observe that squaring an operator of the form (3.3) yields

h2 = h

(
1

4
(γ 2+ ‖r‖2+ ‖s‖2+ trace(T∗T)),

1

2
(γ r + Ts),

1

2
(γ s+ T∗r ),

1

2
C

)
,

(4.2)

whereC = (cjk) and

cjk = γ tjk − (cofacT) jk + r j sk ¤

Equation (4.2) implies that

trace(h2) = 1

4
(γ 2+ ‖r‖2+ ‖s‖2+ trace(T∗T)) (4.3)

By polarization of this equation we obtain

trace(hh′) = 1

4
(γ γ ′ + r · r ′ + s · s′ + trace(T∗T ′)) (4.4)

It is useful to introduce the following linear involutions intoH4

h 7→ h# = h(γ ,−r ,−s, T) and h 7→ h(p) = h(γ , s, r , T∗), h ∈ H4

Physically (ifh designates an observable or a state) the maph 7→ h# is nothing
but thetime reversal operation.

Definition 4.3. If h = h(γ , r , s, T) ∈ H4 we shall refer toh# as thetime-reversed
operatorand toh(p) as theparticle-transposedorp-transposed operator.h is called
anmds operatorprovidedh# = h and ifh is any hermitian operator its time reversal
invariant parthmds= 1

2(h+ h#) = h(γ , 0, 0, T) is called themds component of h.
Finally h is said to beparticle symmetricor p symmetricif h(p) = h.

Remark. Note that our choice of the word “p transposed” and “p symmetric,”
clumsy as it seems at first, is necessary, since by our identification of an hermitian
operatorh in C| 2⊗ C| 2 with its matrix relative to the computational basis, the
concepts “transposed” and “symmetric” already have a meaning different from
“p transposed” and “p symmetric.”



P1: GCQ/GGN/GCX/GIR/GAY/GFQ P2: GCQ

International Journal of Theoretical Physics [ijtp] PP108-299768 March 27, 2001 12:53 Style file version Nov. 19th, 1999

1084 Kummer

Observe that it follows from (4.4) that the involutionsh 7→ h# andh 7→ h(p)

are self-adjoint relative to the inner product defined by Eq. (3.5), that is, we have

〈h#, h′〉 = 〈h, h′#〉, h, h′ ∈ H4 (4.5)

and

〈h(p), h′〉 = 〈h, h′(p)〉, h, h′ ∈ H4 (4.6)

The following corollary is an immediate consequence of Theorem 4.2:

Corollary 4.4. If ρ = ρ(r , s, T) is a state then so isρ# (called thetime re-
versedstate) andρ(p) (called thep-transposedstate). Moreover the mds component
ρmds= ρ(0, 0, T) of ρ is a state.

Proof: To show thatρ(p) is a state just interchanger ands and replaceT by
T∗ in Theorem 4.2, observing that cofac(T∗) = (cofacT)∗. To show thatp# is a
state replacer ands by −r and−s respectively. Finally it is clear that the mds
component ofρ, being a weighted mean of two states, is a state.¤

The following theorem characterizes the idempotent operators of the form
ρ(r , s, T) (pure states of the 2-qubit system):

Theorem 4.5. Letρ = ρ(r , s, T) be an hermitian operator of trace1. Thenρ is
a pure state(i .e., ρ2 = ρ) iff for some vectors with ‖s‖ ≤ 1 and some rotation
matrix R

r = −Rs

T = −R
((√

1− ‖s‖2)(I − Es)+ Es
)

(4.7)

where fors 6= 0 Es denotes the projection inIR3 onto the one-dimensional sub-
space generated bys. In other words, the map

(s, R) 7→ Ps,R := ρ(− Rs, s,−R
(√

1− ‖s‖2(I − Es)+ Es
))

is a parameterization of the set of pure states of the pair of qubits by the points
of B3× SO(3) where B3 denotes the unit ball inIR3. Furthermore Ps,R and Ps′,R′

belong to the same orbit iff‖s′‖ = ‖s‖.

Proof: Using Eq. (4.2) the conditionρ2 = ρ yields

‖r‖2+ ‖s‖2+ trace(T∗T) = 3

r = Ts s= T∗r (4.8)
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T∗ = | s〉〈r | − (cofac(T))∗

Multiplying the last equation from the right byT∗ and making use of the second
equation gives

T∗T = |s〉〈s| − T(cofac(T))∗ = |s〉〈s| − (detT)I

Hence

T∗T + (detT)I = |s〉〈s| (4.9)

Similarly,

T T∗ + (detT)I = |r 〉〈r | (4.10)

Now from the second of the Eq. (4.8) we deduce that

‖r‖2 = r · Ts= s · T∗r = ‖s‖2 (4.11)

Inserting this into the first equation of (4.8) and combining it with the equation
obtained from taking the trace in (4.9) we obtain

detT = ‖s‖2− 1 (4.12)

From Eq. (4.9) or (4.10) we conclude that detT ≤ 0, which implies the already
familiar result‖s‖ ≤ 1. Equation (4.9) can now be rewritten as

[T ]2 = ‖s‖2Es+
(
1− ‖s‖2)I = (1− ‖s‖2)(I − Es)+ Es

It follows that

[T ] =
√

1− ‖s‖2(I − Es)+ Es (4.13)

Now by the polar decomposition theorem there existsR ∈ SO(3) such thatT =
−R[T ]. Finally r = Ts= −Rs. The condition‖s‖ = ‖s′‖ is clearly necessary for
Ps,R andPs′,R to be equivalent. Since a canonical form ofPs,R is given by

P′ = P‖s‖e1, I = ρ(−‖s‖e1,‖s‖e1,−diag
(
1,
√

1− ‖s‖2,
√

1− ‖s‖2) (4.14)

the condition is also sufficient. ¤

Following Wootters (1997) we call the numberξ =
√

1− ‖s‖2 theconcur-
renceof the pure statePs,R. The numberξ varies over the interval [0, 1] and
measures the degree of entanglement between the two qubits. For fixed 0≤ ξ ≤ 1
let Pξ denote the orbit of all pure states with concurrenceξ and letSξ denote
convex hull ofPξ : Sξ = convPξ .

Note thatPξ coincides with the set of all extreme points ofSξ . (Proof:
Theorem A.3)
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Theorem 4.6. (1) The orbitPξ is invariant under the involutionsρ 7→ ρ# and
ρ 7→ ρ(p): If P is a pure state of concurrenceξ then so is the time reversed state
P# and the p transposed state P(p).

(2) The convex setSξ is invariant under the involutionsρ 7→ ρ# andρ 7→ ρ(p):
If the stateρ is a mixture of pure states of concurrenceξ then so is the time reversed
state p# and the p-transposed state p(p).

Proof: (1) SupposeP = Ps,R. Then P# = P−s,R and P(p) = Pv,R∗ where
v = −Rs.

(2) The assertion is an immediate consequence of Part (1) and the affine
character of the involutionsρ 7→ ρ# andρ 7→ ρ(p). ¤

There are two interesting special cases: The setP1 of pure states corresponding
to the points ofSO(3) and the setP0 of the pure states corresponding to the
points ofS2× SO(3). P0 comprises the set of all pure states of the product type
ρ = ρ(r )⊗ ρ(s), (wherer andsare unit vectors) and thereforeS0 coincides with
the set of allseparablestates. On the other handP1 comprises the set of pure states
of the formρ = ρ(0, 0,−R) = P0,R, and we shall call such a pure state apure
state of mds type. It follows thatS1 consists of mds states; as a matter of factS1

exhausts the set of all mds states. This follows from the following proposition:

Proposition 4.7. LetT denote the set of all correlation matrices. Then

T = conv(−SO(3))

Proof: Clearly conv(−SO(3))⊂ T since for allR ∈ SO(3)− R ∈ T andT is
convex. Conversely, using Eqs. (4.7) and (4.13) we see that every correlation matrix
of a pure statebelongs to conv(−SO(3)). Indeed since fors 6= 0 Es = 1

2(I + Fs)
whereFs stands for the flip byπ about the axis spanned by the vectors we have
for ξ ∈ [0, 1]

ξ (I − Es)+ Es = 1

2
(1+ ξ )I + 1

2
(1− ξ )Fs

Now it follows from Eq. (4.13) that [T ] is a weighted mean of the identity matrix
I and the flipFs. ThereforeT(= −R[T ]) itself is a weighted mean of−R and
−RFs.

Finally since the correlation matrixTρ of an arbitrary stateρ can be written
as a weighted mean of the correlation matrices of at most four orthogonal pure
states (apply the spectral theorem toρ) the assertion follows. ¤

Now let ρ = ρ(0, 0, T) be an arbitrary mds state. Then by the proposition
Tρ = T ∈ conv(−SO(3)) and thereforeρ ∈ S1.
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Remark 4.8. If T is any correlation matrix the mds operatorρ(0, 0, T) is a
state. (Indeed ifT is a correlation matrix then by definition, for some vectors
r , s∈ B3, ρ = ρ(r , s, T) is a state; but thenpmds= p(0, 0, T) is also a state, by
Corollary 4.4). Moreover the mapT 7→ ρ(0, 0, T) is an affine injection ofT into
the state spaceS, whose inverse map is the restriction toS1 of the mapρ 7→ Tρ
that associates with each stateρ the corresponding correlation matrix.

Which condition ensures that the two pure statesP1 = ρ0,R1 andP2 = ρ0,R2

of mds type are orthogonal to each other?

Lemma 4.9. The pure states P1 = P0,R1 and P2 = P0,R2 are orthogonal iff
R1R∗2 = F where F is a flip, that is, a rotation byπ .

Proof: Clearly P1 andP2 are orthogonal iff trace(P1P2) = 0. (Indeed letχ1 and
χ2 be unit vectors in the ranges ofP1 and P2 respectively. Then trace (P1P2) =
|〈χ1, χ2〉|2). Now by (4.4), trace(P1P2) = 1

4(1+ trace(R1R∗2)). ThusP1 andP2 are
orthogonal iff trace(F) = 1+ 2 cosϕ = −1, whereF = R1R∗2 andϕ is the angle
of rotation ofF . Henceϕ = π . ¤

Lemma 4.10. For k = 0, 1, 2, 3,define

Pk = P0,Fk

where the Fks are the elements of the four-groupV defined in the paragraph
preceding Proposition 3.3. Then(P0, P1, P2, P3) is a complete orthogonal set of
pure states.

Proof: For the proof observe that

1

4

3∑
k=1

Pk = ρ
(

0, 0,−1

4

(
I +

3∑
k=1

Fk

))
= ρ(0, 0, 0)= 1

4
(1⊗ 1) ¤

Using the formulas

(σk ⊗ σk)φ0 = −φ0, k = 1, 2, 3 (4.15)

and

(σk ⊗ σk)φ j = (−1)δ jkφ j , j , k = 1, 2, 3 (4.16)

it is easily verified that thePks are the projections corresponding the one-
dimensional subspaces generated by the members of theBell basis(φ0, φ1, φ2, φ1)
in C| 2⊗ C| 2 defined by Eq. (2.8), that is, fork = 0, 1, 2, 3,Pk = |φk〉〈φk|. Accord-
ingly we shall call (P0, P1, P2, P3) the Bell set. (Traditionally P0 is called the
singlet state, whereasP1, P2, P3 are calledtriplet states). A general Bell setwill
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be for us any set (Q0, Q1, Q2, Q3) such that fork = 0, 1, 2, 3

Qk = (u1⊗ u2)Pk
(
u∗1 ⊗ u∗2

) = P0,R(u1)Fk R(u2)∗ (4.17)

If h(γ , r , s, T) is an hermitian operator with canonical formh(γ , r ′, s′, εD) we can
compute its lowest eigenvalueλ1 using the following expression

λ1 = inf
‖v‖≤1,R∈SO(3)

trace(h(γ , r ′, s′, εD)Pv,R∗)

= 1

4
inf

‖v‖≤1,R∈SO(3)

((
γ − v · (Rs′ − r ′)

− ε trace
(
RD
(√

1− ‖v‖2(I − Ev)+ Ev
)))

The operator is positive semidefinite iffλ1 ≥ 0. This leads to the following
criterion for a given hermitian operatorρ(r , s, T) of trace 1 to be a state

Theorem 4.11. Let ρ = ρ(r , s, T) be a hermitian operator of trace 1 and let
ρ(r ′, s′, εD) be one of its canonical forms. Then a necessary and sufficient condi-
tion for ρ to be a state is that

sup
‖v‖≤1,R∈SO(3)

(
v · (Rs′ − r ′ + ε trace

(
RD
(√

1− ‖v‖2(I − Ev)+ Ev
))) ≤ 1

5. SEPARABLE STATES

In this section we deal with the setS0 of all separable states. The following
lemma shows that the setS0 possesses a symmetry property beyond the general
symmetry properties exhibited bySξ for generalξ (which are described in Part (2)
of Theorem 4.6):

Lemma 5.1. If ρ(r , s, T) ∈ S0 thenρ(r ,−s,−T) ∈ S0.

Proof: Supposeρ(r , s, T) =∑ ck(ρ(r k)⊗ ρ(sk)), where theck are nonnegative
numbers adding up to 1 andr k and sk are unit vectors. Thenr =∑ ckr k, s=∑

cksk andT =∑ ck|r k >< sk|. Therefore

ρ(r ,−s,−T) =
∑

ck(ρ(r k)⊗ ρ(−sk)) ∈ S0 ¤

The following theorem, part of whose proof we moved to Appendix B, shows that
this symmetry property characterizes the set of all separable states.

Theorem 5.2. Supposeρ(r , s, T) is a state. Then these are equivalent:

(1) ρ(r , s, T) is separable.
(2) ρ(r ,−s,−T) is a state.
(3) ρ(−r , s,−T) is a state.
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Proof: (1) ⇒ (2) by Lemma 5.1
(2) ⇔ (3) by Corollary 4.4
(3) ⇒ (1) by Corollary B.5 ¤

Corollary 5.3. Supposeρ = ρ(r , s, T) is a state and eitherρ(r ,−s,−T) ∼ ρ
or ρ(−r , s,−T) ∼ ρ; thenρ is separable.

Corollary 5.4. Let ρ = ρ(r , s, T) be a state with det T= 0 and suppose that
there is a canonical formρ(r ′, s′, D) of ρ such that either r′3 = 0 or s′3 = 0. Then
ρ is separable.

Proof: Since detT = 0ρ(F3r ′, s′,−D) andρ(r ′, F3s′,−D) are other canonical
forms of ρ(r , s, T) (cf. Proposition 3.2). Ifr ′3 = 0 then F3r ′ = −r ′ and there-
fore ρ(−r ′, s′,−D) is a canonical form ofρ. Now ρ(−r ′, s′,−D) is manifestly
a canonical form ofρ(−r , s,−T) and thereforeρ(−r , s,−T) ∼ ρ. Similarly if
s′3 = 0 thenρ(r ,−s,−T) ∼ ρ. The conclusion now follows from the previous
Corollary. ¤

Corollary 5.5. Letρ = ρ(r , s, T) be a state and assume that rank T≤ 1. Then
ρ is separable.

Proof: In this case the invariance groupG′ of D = diag(µ1, 0, 0) contains the
subgroupSO1(2) of all rotations about the first coordinate axis. Thus ifρ(r ′, s′, D)
is any canonical form ofρ(r , s, T) then so isρ(Rr ′, s′, D) for anyR ∈ SO1(2). By
a judicious choice ofR we can achieve (Rr ′)3 = 0. ¤

Theorem 5.2 suggests that we introduce another linear involutionh 7→ ĥ into
the setH4, wherebŷh = (γ , r ,−s,−T) if h = (γ , r , s, T). This involution is again
self-adjoint relative to the inner product defined onH4:

〈ĥ, h′〉 = 〈h, ĥ
′〉, h, h′ ∈ H4 (5.1)

a result that implies, together with the self-duality of coneH+4 , that also the
conêH+4 = {h ∈ H4|ĥ ∈ H+4 } is self-dual. Moreover we have

h+ ĥ = h(γ , r )⊗ 1 (5.2)

LetK be the (closed) convex cone generated by the setS0 of all separable states:
K =⋃γ≥0 γS0 and letK̃ be its dual cone

K̃ = {h ∈ H4 | ∀ρ ∈ S0: 〈h, ρ〉 ≥ 0}
By Theorem B.3 (of Appendix B) we have

K̃ = H+4 + Ĥ+4 (5.3)
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Definition 5.6. An hermitian operatorh of the form h = k+ k̂′ with k, k′ ∈
H+4 is called aBell observable.

Now the bipolar theorem (cf. Hilgertet al. (1989), Proposition I.14) imme-
diately gives

Theorem 5.7. An hermitian operatorρ of trace1 is a separable state iff〈h, ρ〉≥0
for every Bell observable. A stateρ is separable iff the expectation value of every
Bell observable in the stateρ is nonnegative.

If ρ is a state then by definition ˆρ is a Bell observable. The eigenvalues of
ρ̂ are the possible outcomes that a measurement of the observable can yield. By
Theorem 5.2,ρ is separableiff ρ̂ is positive semidefinite. Letρ1 = (traceπ1)−1π1

be the normalized eigenprojection of ˆρ belonging to the lowest eigenvalueλ̂1. Then
the expectation value of the Bell observable ˆρ1 in the stateρ is given by〈ρ̂1, ρ〉 =
〈ρ1, ρ̂〉 = λ̂1. If ρ is nonseparable then̂λ1 < 0 and thereforeρ1 is nonseparable
(since ˆρ1 is not positive semidefinite or since the expectation value of the Bell
observable ˆρ in the stateρ1 is negative). Thus we have proved

Corollary 5.8. Let ρ be a state. Thenρ is nonseparable iff the lowest eigen-
value λ̂1 of the Bell observablêρ is strictly negative. Letρ1 be the normalized
eigenprojection of̂ρ belonging to the lowest eigenvalueλ̂1. Thenλ̂1 is the expec-
tation value of the Bell observablêρ1 in the stateρ, and ifρ is nonseparable then
so isρ1.

Example. Supposeρ = ρ(0, 0, T) is an mds state. Then it follows from Eq. (5.2)
thatρ + ρ̂ = 1

2(1⊗ 1) and therefore

ρ̂ρ = 1

2
ρ − ρ2

If ρ is alsopureand therefore is of the formρ = ρ(0, 0,−R) = P0,R then

ρ̂ρ = −1

2
ρ

Since ˆρ, being equivalent toρ(0, 0, I ), has the spectrum

sp(ρ̂) =
{
−1

2
,

1

2

}
with − 1

2 being asimpleeigenvalue, we conclude thatρ1 = ρ andλ̂1 = − 1
2.
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6. THE MDS-STATES

In this section we turn our attention to hermitian operators of the form
ρ(0, 0, T) whose canonical form isρ(0, 0, εD). Thus in case detT > 0(detT < 0)
the canonical form is uniquely given byρ(0, 0, D)(ρ(0, 0,−D)). In the case where
detT = 0 there are two canonical formsρ(0, 0,±D). The spectrum ofρ(0, 0, T)
coincides with the spectrum of its canonical formρ(0, 0, εD), which in turn can
easily be determined since the Bell basis in C| 2⊗ C| 2 consists of eigenvectors for
ρ(0, 0, εD). The corresponding eigenvalues are affine functions of the singular
valuesµ1, µ2, andµ3 of T .

More precisely, using Formulas (4.15) and (4.16) we easily verify the follow-
ing theorem:

Theorem 6.1. For k = 0, 1, 2, 3we have

ρ(0, 0, εD)φk = wk(ε)φk

where

w0(ε) = 1

4
(1− ε(µ1+ µ2+ µ3))

w1(ε) = 1

4
(1+ ε(−µ1+ µ2+ µ3))

w2(ε) = 1

4
(1+ ε(µ1− µ2+ µ3))

w3(ε) = 1

4
(1+ ε(µ1+ µ2− µ3))

Let (u1, u2) ∈ U1×U1 be such that

ρ(0, 0, T) = (u1⊗ u2)(ρ(0, 0, εD)
(
u∗1 ⊗ u∗2

)
(6.1)

Then the vectors defined by

ψk = (u1⊗ u2)φk, k = 0, 1, 2, 3 (6.2)

constitute aneigenbasisof ρ(0, 0, T), that is, an orthonormal basis of C| 2⊗ C| 2

that consists of eigenvectors ofρ(0, 0, T), wherebywk(ε) is the eigenvalue that
belongs to the eigenvectorψk. Thus the spectral resolution ofρ(0, 0, T) takes the
form

ρ(0, 0, T) =
3∑

k=0

wk(ε)Qk (6.3)
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where theQks as defined by Eq. (4.17) are the projections corresponding to the
one-dimensional subspaces generated by theψks.

Theorem 6.2. Letρ = ρ(0, 0, T) be an mds operator. Then these are equivalent:
(1) ρ is a state
(2)µ1+ µ2+ εµ3 ≤ 1
(3) ρ ∈ S1

Proof: (1)⇔(2).ρ is a state iff the lowest eigenvalue is nonnegative. The lowest
eigenvalue is given byw0(1) if ε = 1 andw3(−1) if ε = −1. The two conditions
can be summarized by Condition (2) of the theorem.

(2)⇒(3). According to Eqs. (6.3) and the particular form of theQks as given
by Eq. (4.17) we have

ρ =
3∑

k=0

wk(ε)Qk =
3∑

k=0

wk(ε)P0,R(u1)Fk R(u2)∗ (6.4)

Since thewk(ε)s add up to 1 and if (2) is satisfied are nonnegative the above formula
makes it evident thatρ belongs toS1.

(3)⇒(1) obvious ¤

Remarks.

(1) Note that sinceTρ = Tρmds (cf. Remark 4.8) every correlation matrix is
derived from an mds state. Thus Eq. (6.4) implies that every correlation
matrix can be represented as a weighted mean offour improper orthogonal
matrices, thereby strengthening Proposition 4.7.

(2) Observe that we can use Condition (2) of the theorem to give a new proof
of Proposition 3.6 (which asserts that the correlation values of a state
belong to the interval [0, 1]).

(3) We can extract from the theorem the following interesting mathematical
result:

Corollary 6.3. Let T be a real3× 3matrix and letµ1 ≥ µ2 ≥ µ3 be its singular
values in descending order and letε = sign(detT). Then T belongs to the convex
hull of SO(3) iff µ1+ µ2− εµ3 ≤ 1.

Proof: If T ∈ conv(SO(3)) then by Proposition 4.7−T is a correlation matrix,
and thereforeρ(0, 0,−T) is a state (cf. Remark 4.8), which by the theorem implies
µ1+ µ2− εµ3 ≤ 1. Conversely, ifµ1+ µ2− εµ3 ≤ 1 holds then by the theorem
ρ(0, 0,−T) is a state and therefore by Proposition 4.7T ∈ conv(SO(3)). ¤
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The following Corollary sharpens Proposition 3.5:

Corollary 6.4. If ρ = ρ(r , s, T) is a state thenr , s∈ B3 and

T ∈ conv(−SO(3))

Our next step is to single out those mds states that are also separable, that is,
we want to characterize the setS0 ∩ S1. An extreme point ofS0 is a pure state of
the product form:

P = ρ(r )⊗ ρ(s) = ρ(r , s, |r 〉〈s|), ‖r‖ = ‖s‖ = 1

Taking the mds component of such a state

ρr ,s := (ρ(r )⊗ ρ(s))mds= ρ(0, 0, |r 〉〈s|)
we obtain a state (of rank 2) that belongs toS1 ∩ S0. Let E denote the set of all
these states.

E = {ρr ,s | r , s∈ S2}
ThenE constitutes an orbit under the groupU1×U1 and we can state the following
proposition:

Proposition 6.5. S0 ∩ S1 = conv(E) andE is the set of extreme points ofS0 ∩ S1.

Proof: ClearlyS0 ∩ S1 ⊃ conv(E). To prove the opposite inclusion letρ ∈ S0 ∩
S1. Sinceρ ∈ S0

ρ =
n∑

k=1

ck(ρ(r k)⊗ ρ(sk))

where thecks are nonnegative numbers adding up to 1 andn is a positive integer
not larger than 16 (Caratheodory’s Theorem; cf. Bronsted (1982), Corollary 2.4).
Now sinceρ ∈ S1, taking the mds component (cf. Definition 4.3) on both sides
leaves the left hand side of the equation unaffected:

ρ =
n∑

k=1

ck(ρ(r k)⊗ ρ(sk))mds=
n∑

k=1

ckρr k,sk

showing thatρ ∈ conv(E). That the set of extreme points ofS0 ∩ S1 coincides
with E now is a consequence of Theorem A.3.¤

Theorem 6.6. Letρ = ρ(0, 0, T) be a state. Then these are equivalent:
(1) ρ is separable
(2) ρ(0, 0,−T) is a state
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(3) trace(D) = µ1+ µ2+ µ3 ≤ 1
(4) sp(ρ(0, 0, T)) ⊂ [0, 1

2]

Proof: (1)⇒(2) By Lemma 5.1
(2)⇒(3) Sinceρ(0, 0,±T) are states it follows from Theorem 5.2 thatµ1+

µ2+ µ3 ≤ 1.
(3)⇒(1) Defineµ0 = 1− µ1− µ2− µ3. Then

D = µ0

2
(−E1)+

(
µ0

2
+ µ1

)
E1+ µ2E2+ µ3E3 (6.5)

where fori = 1, 2, 3,Ej denotes the projection onto the jth coordinate axis.
Since the operatorsρ(0, 0,±Ej ) belong toE , it follows from (6.5) that

ρ(0, 0, εD) ∈ convE = S0 ∩ S1. Hence by the invariance ofS0 ∩ S1 underU1×
U1, we also haveρ = ρ(0, 0, T) ∈ S0 ∩ S1.

(3)⇔(4) In caseε = 1 Condition (2) impliesw0(1)≥ 0 andw3(1)≤ 1
2(1−

µ1). Therefore in this case sp(ρ(0, 0, T)) ⊂ [w0(1), w3(1)] ⊂ [0, 1
2]. In caseε =

−1 Condition (2) impliesw3(−1)≥ 1
2µ1 and w0(−1)≤ 1

2. Hence in this case
sp(ρ(0, 0, T)) ⊂ [w3(−1), w0(−1)] ⊂ [0, 1

2]. Conversely, assume that sp(ρ(0,
0, T)) ⊂ [0, 1

2]. Then Condition (2) is implied in case ofε = 1 by w0(1)≥ 0
and in caseε = −1 byw0(−1)≤ 1

2. ¤

Corollary 6.7. SupposedetT ≥ 0. Then ifρ = ρ(0, 0, T) is a state thenρ is
separable.

Proof: If detT ≥ 0 thenε can be chosen to be+1 and therefore the eigenvalues
of ρ = ρ(0, 0, T) arewj (1), j = 0, 1, 2, 3. Thus ifρ is a state then

w0(1)= 1

4
(1− µ1− µ2− µ3) ≥ 0,

a condition which by Theorem 6.6, Part (3), is equivalent toρ being separable.
¤

7. WHEN IS A GENERIC OPERATOR ρ(r , s, T) A
(SEPARABLE) STATE?

In this section we shall deal with the matrices of a 2-qubit operatorh =
h(γ , r , s, T) relative to two distinguished bases: the Bell basis (2.8) (φ0, φ1, φ2, φ3)
and an eigenbasis (6.2) (ψ0, ψ1, ψ2, ψ3) of the mds componenthmds=
h(γ , 0, 0, T) of h. To analyze the structure of the matrix [h]φ of the operator
h relative to the Bell basis, it is useful to writeh in the form

h = h(γ , 0, 0, T)+1(r , s)
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where1(r , s) = 1
4(r · σ ⊗ 1+ 1⊗ s · σ ). A straightforward computation shows

that the matrices relative to the Bell basis (2.8) of the operatorsσ j ⊗ 1, j = 1, 2, 3
and the operators1⊗ σk, k = 1, 2, 3 respectively have the form

[σ j ⊗ 1]φ = i A j and [1⊗ σk]φ = i Bk

wherei denotes the imaginary unit andAj and Bk arereal 4× 4 matrices with
[ Aj , Bk] = 0 for j , k = 1, 2, 3. It follows that

[h]φ = [h(γ , 0, 0, T)]φ + [1(r , s)]φ = X + iY

where

X = [h(γ , 0, 0, T)]φ = 1

4

(
1⊗ 1−

3∑
j ,k=1

t jk Aj Bk

)
and

Y = 1

i
[1(r , s)]φ =

(
3∑

j=1

r j Aj + sj Bj

)
arereal 4× 4 matrices. Thus we can state

Theorem 7.1. The time reversal of observables and states of a pair of qubits is
represented by the complex conjugation of the corresponding matrix relative to
the Bell basis. More precisely let h= h(γ , r , s, T) is an observable (state) of the
qubit system. Then if[h]φ denotes its matrix relative to the Bell basis, we have

[h#]φ = [h]φ

and therefore

[hmds]φ = Re[h]φ.

Proof: Taking the matrix relative to the Bell basis in the equation

h# = h(γ , 0, 0,T)+1(−r ,−s)

yields

[h#]φ = [h(γ , 0, 0, T)]φ + [1(−r ,−s)]φ = X − iY = [h]φ ¤

Corollary 7.2. The matrix[h]φ of an hermitian operator h relative to the Bell
basis hasrealentries iff h is an mds operator (cf. Definition 4.3).

A one-particle hermitian operatorρ = ρ(r ) of trace 1 is a state iff detρ ≥ 0.
In the case of a pair of qubits we are interested in finding analogous criteria
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that help us to decide if a given hermitian operatorρ = ρ(r , s, T) of trace 1 is a
(separable) state. For this purpose we are interested in the matrices ofρ (andρ̂)
relative to an eigenbasis (ψ0, ψ1, ψ2, ψ3) of ρmds. Let ρ ′ = ρ(r ′, s′, εD) andρ̂ ′ =
ρ(r ′,−s′,−εD) be the canonical forms ofρ andρ̂ respectively. Using Eq. (6.1) we
find

[ρ]ψ = [ρ ′]φ =


w0(ε) −ia1 −ia2 −ia3

ia1 w1(ε) −ib3 ib2

ia2 ib3 w2(ε) −ib1

ia3 −ib2 ib1 w3(ε)

 (7.1)

and

[ρ̂]ψ = [ρ̂ ′]φ =


w0(−ε) −ib1 −ib2 ib3

ib1 w1(−ε) −ia3 ia2

ib2 ia3 w2(−ε) −ia1

ib3 −ia2 ia1 w3(−ε)

 (7.2)

whereak = 1
4(r′k − s′k) andbk = 1

4(r′k + s′k), k = 0, 1, 2, 3.ρ is a state if the princi-
pal sub-determinants of the matrix (7.1) are nonnegative. If in addition the principal
sub-determinants of the matrix (7.2) are nonnegative the state is separable.

Theorem 7.3. Let ρ = ρ(r , s, T) be an hermitian operator of trace1. Let
ρ(r ′, s′, εD) be a canonical form and leta= 1

4(r ′ − s′) andb = 1
4(r ′ + s′). Thenρ

is a state iffµ1+ µ2+ εµ3 ≤ 1 and

w0(ε)w1(ε)w2(ε)w3(ε)+ (a · b)2 ≥ w2(ε)w3(ε)a2
1 + w1(ε)w3(ε)a2

2

+ w1(ε)w2(ε)a2
3 + w0(ε)w1(ε)b2

1

+ w0(ε)w2(ε)b2
2 + w0(ε)w3(ε)b2

3 (7.3)

w0(ε)w1(ε)w2(ε) ≥ w0(ε)b2
3 + w1(ε)a2

2 + w2(ε)a2
1 (7.4)

w0(ε)w1(ε)w3(ε) ≥ w0(ε)b2
2 + w1(ε)a2

3 + w3(ε)a2
1 (7.5)

w0(ε)w2(ε)w3(ε) ≥ w0(ε)b2
1 + w2(ε)a2

3 + w3(ε)a2
2 (7.6)

w1(ε)w2(ε)w3(ε) ≥ w1(ε)b2
1 + w2(ε)b2

2 + w3(ε)b2
3 (7.7)

w1(ε)w2(ε) ≥ b2
3 w1(ε)w3(ε) ≥ b2

2 w2(ε)w3(ε) ≥ b2
1 (7.8)

w0(ε)wk(ε) ≥ a2
k k = 1, 2, 3. (7.9)
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ρ is a separable state iffµ1+ µ2+ µ3 ≤ 1and in addition to the inequalities
(7.3)–(7.9) the same inequalities are satisfied in whichε is replaced by−ε and
the vectorsa andb are interchanged.

Remarks

(1) Note that the conditions of Theorem 7.2 are invariant with respect to the
substitutions (a, b)→ (±a,±b). This observation can be used to give
another proof of the fact that the state spaceS is invariant under the
involutions ρ 7→ ρ# and ρ 7→ ρ(p) (cf. Corollary 4.4). (Indeed, [ρ#]ψ
is obtained from [ρ]ψ by the substitution (a, b)→ (−a,−b). Moreover
sinceρ(s′, r ′, εD) is a canonical form ofρ(p), it is possible to represent
ρ(p) by a matrix that is obtained from [ρ]ψ by the substitution (a, b)→
(−a, b)).

A similar argument based on Theorem 7.2 can be used to give a
second proof of the fact that the spaceS0 of all separable states is invariant
under the two involutionsρ 7→ ρ# andρ 7→ ρ(p) (cf. Theorem 4.6).

(2) Note that the term (a · b)2 in (7.3) vanishes precisely if‖r‖ = ‖s‖ in
ρ = ρ(r , s, T). Indeed,‖r‖ = ‖s‖ is equivalent to‖r ′‖ = ‖s′‖, which in
turn is equivalent to (a · b) = 0.

As a special case let us consider the case whereρ is p symmetric, that is,
such thatρ(p) = ρ. Thenρ has the formρ = ρ(r , r , T), whereT is a symmetric
matrix. It is useful to distinguish the cases whereT is negative (semi-)definite,
indefinite, and positive (semi-)definite. Let us consider the indefinite case where
the eigenvalues ofT are given by−µ1, µ2, and−µ3. (In the case of a symmetric
matrix the eigenvalues agree up to a sign with the singular values). Then there
exists a rotation matrixR such that

RTR∗ = diag(−µ1, µ2− µ3)

Puttingr ′ = Rr we see that a canonical form ofρ is given by

ρ ′ = ρ(r ′, F2r ′, D)

Thereforea= (r ′1/2, 0,r ′3/2) andb = (0, r ′2/2, 0). Forρ to be a state it is
necessary thatw0(1)≥ 0. For simplicity let us further assume thatw0(1) > 0,
which is equivalent toµ1+ µ2+ µ3 < 1.

It follows that under this additional assumption the operatorρ is a state iff
the inequality

4w0(1)w1(1)w3(1)≥ (w3(1)r ′21 + w0(1)r ′22 + w1(1)r ′23
)

(7.10)
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holds, since under the given hypothesis inequality (7.10) (which is an instant of
(7.5)) implies all inequalities (7.4)–(7.9). The stateρ is separable iff, in addition,
the inequality

4w0w1w2w3 ≥
(
w0w1r

′2
1 + w1w3r

′2
2 + w0w3r

′2
3

)
with wk = wk(−1), k = 0, 1, 2, 3 is satisfied. All other cases are treated similarly.

We end this section by giving a necessary condition for the nonseparability
of a state.

Theorem 7.4. Let ρ = ρ(r , s, T) be a state. Thenr ∈ S2 or s∈ S2 iff ρ is a
product stateρ = ρ(r )⊗ ρ(s) with one factor being a (1-qubit) pure state. In
particular if ρ is a nonseparable state then‖r‖ < 1 and‖s‖ < 1.

Proof: If ρ = ρ(r )⊗ ρ(s) with one of the factors being a pure state then clearly
r ∈ S2 or s∈ S2. To see that also the converse holds we consider the spectral
resolution ofρ

ρ =
4∑

j=1

wj Psj ,Rj =
4∑

j=1

wjρ(r j , sj , Tj )

where for j = 1, 2, 3, 4,r j = −Rj sj and

Tj = −Rj
(
ξ j
(
I − Esj

)+ Esj

)
and thewj sare nonnegative numbers adding up to 1. Let us consider the case where
r =∑4

j=1 wj r j ∈ S2. Then for j = 1, 2, 3, 4,r j = r and thereforesj = −R∗j r ∈
S2, which implies that

Tj = −Rj |sj 〉〈sj | = |r 〉〈sj |
Lettings=∑4

j=1 w j sj we obtain that

ρ = ρ(r , s, |r 〉〈s|) = ρ(r )⊗ ρ(s)

whereρ(r ) is a one-particle pure state. A similar argument can be applied ifs∈ S2.
¤

8. CONCURRENCE AS A MEASURE OF ENTANGLEMENT

In section 4 we introduced the concurrence

ξ =
√

1− ‖s‖2
as a measure of the entanglement of the two qubits in the pure statePs,R. For a
member of the Bell setPk = |φk〉〈φk| we have ξ (Pk) = 1. The following
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theorem shows how to compute the concurrence of a pure stateP from the
components of a unit vector in the range ofP with respect to the Bell basis
(2.8).

Theorem 8.1. Let P= Ps,R be a pure state and letχ be a unit vector in the range
of P (i.e., P= |χ〉〈χ |). Letαk = 〈χ , φk〉, k = 0, 1, 2, 3be the four components
of χ with respect to the Bell basis (2.8). Then

ξ (P) =
∣∣∣∣∣ 3∑

k=0

α2
k

∣∣∣∣∣.
Proof: Probably the most elegant proof of this formula exploits theU1×U1

isometryϕ between C| 2⊗ C| 2 andM2, whose existence we established in Propo-
sition 2.1. Application ofϕ to the expressionχ =∑3

k=0 αkφk yields, in view of
Formula (2.9)

ϕ(χ ) = 1√
2

(
α01− i

3∑
k=1

αkσk

)
= 1√

2

[
α0− iα3 iα1− α2

iα1+ α2 α0+ iα3

]
Taking the determinant leads to the formula∣∣∣∣∣ 3∑

k=0

α2
k

∣∣∣∣∣ = 2| detϕ(χ )|

Now the determinant ofϕ(χ ) is clearly aU1×U1 invariant. Indeed ifχ ′ =
(u1⊗ u2)χ for some (u1, u2) ∈ U1×U1 then

detϕ(χ ′) = detϕ((u1⊗ u2)χ ) = det(u1ϕ(χ )u∗2) = detϕ(χ )

Next, observe that the unit vector

χ ′ = 1√
2

((−√1+ ξ)φ0+
(
i
√

1− ξ)φ1
)

with ξ = ξ (P) =
√

1− ‖s‖2, belongs to the range of the canonical form (4.14)
P′ = P‖s‖e1, I of P. Indeed we have

[|χ ′〉〈χ ′ |]φ = 1

2


(1+ ξ ) i‖s‖ 0 0

−i‖s‖ (1− ξ ) 0 0

0 0 0 0

0 0 0 0

 =
[
P‖s‖e1, I

]
φ
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It follows thatχ ′ must have the formχ ′ = (u1⊗ u2)χ for some (u1, u2) ∈
U1×U1. Finally∣∣∣∣∣ 3∑

k=0

α2
k

∣∣∣∣∣ = 2|detϕ(χ )| = 2|detϕ(χ ′)|

= 1

2

∣∣(−√1+ ξ)2+ (i√1− ξ)2∣∣ = ξ. ¤

Corollary 8.2. A pure state P= Ps,R is of mds type (belongs toP1) iff the range
of P contains a unit vectorχ all of whose four components relative to the Bell
basis are real.

Proof: First suppose that the range ofP contains a unit vectorχ whose four
componentsαk = 〈χ , φk〉, k = 0, 1, 2, 3 are real. Then by the theoremξ (P) =∑3

k=0 α
2
k =

∑3
k=0 |αk|2 = 1. Conversely supposeP is of mds type (P ∈ P1). Then

by Corollary 7.2 [P]φ is a real (symmetric) matrix. Since [P]φ is also idempotent
and of trace 1, it admits a normalized eigenvector (α0, α1, α2, α3) ∈ IR4 (unique
up to a sign) belonging to the eigenvalue 1. Thenχ =∑3

k=0 αkφk has the desired
property. ¤

One of the problems that arises in this context is how to extend the concurrence
from the set of all pure states to the set of all states. It seems to us that the lowest
eigenvaluêλ1 of ρ̂ is a perfect candidate for such an extension.

Definition 8.3. Let ρ be an arbitrary state. By theconcurrenceof a stateρ we
mean the number

ξ (ρ) = max(0,−2λ̂1)

The following lemma shows that this definition is indeed an extension of the
notion of concurrence for pure states.

Lemma 8.4. If P = Ps,R is a pure state then

λ̂1 = −1

2

√
1− ‖s‖2 = −1

2
ξ (P)

Proof: A canonical form ofP̂ is given by

P̂
′ = ρ(‖s‖e1,−‖s‖e1, diag

(
1,
√

1− ‖s‖2,
√

1− ‖s‖2))
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Therefore the matrix of̂P relative to an eigenbasis ofPmds has the form

[ P̂]ψ = [ P̂
′
]φ = 1

2


−
√

1− ‖s‖2 0 0 0

0
√

1− ‖s‖2 0 0

0 0 1 i‖s‖
0 0 −i‖s‖ 1


an equation which makes it evident that the smallest eigenvalue ofP̂ is given by
λ̂1 = − 1

2

√
1− ‖s‖2. ¤

Example. What is the concurrence of a general mds stateρ = ρ(0, 0, T)? Since
if detT ≥ 0ρ(0, 0, T) is separable by Corollary 6.7, the concurrence can only
be different from 0 if detT < 0, in which case the smallest eigenvalue of ˆρ =
ρ(0, 0,−T) is

λ̂1 = 1

4
(1− µ1− µ2− µ3)

Thus the concurrence of the mds stateρ is given by

ξ (ρ) = max

(
0,

1

2
(µ1+ µ2+ µ3− 1)

)
(8.1)

A special class of mds states are theWerner states. A hermitian operatorρ =
ρ(r , s, T) is invariant with respect to the group of rotationsiff it is of the form
ρ = ρ(0, 0, ζ I ). ρ is a state, called aWerner state, iff ζ ∈ [−1, 1

3]. If ζ ∈ [0, 1
3]

thenµ j = ζ , j = 1, 2, 3 and thereforeξ (ρ) = 0 by (8.1). If ζ ∈ [−1,− 1
3] then

µ j = −ζ , j = 1, 2, 3 and therefore by (8.1)

ξ (ρ) = max

(
0,−1

2
(1+ 3ζ )

)
which is 0 forζ ∈ [− 1

3, 0] and varies between 0 and 1 asζ varies from− 1
3 to−1.

Remark 8.5. Wootters (1998) extends the concurrence from pure to arbitrary
states in a different way. He defines the concurrence of an arbitrary stateρ via the
following formula

C(ρ) = max(0,κ1− κ2− κ3− κ4)

whereκ1 ≥ κ2 ≥ κ3 ≥ κ4 are the eigenvalues in descending order of the positive-
semidefinite operator

R= (ρ 1
2ρ#ρ

1
2
) 1

2
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It is easy to prove that for all mds statesρ, C(ρ) = ξ (ρ), that is, on these
special states the two extensions agree.

9. SOME EXAMPLES

(1) Following Horodeckiet al.(1996) we give an example of a nonseparable
state whose mds component is separable. Let

χ1 = cosβ(e1⊗ e1)+ sinβ(e2⊗ e2)

χ2 = cosβ(e1⊗ e2)+ sinβ(e2⊗ e1)

with 0 < β < π/2. Thenχ1 andχ2 are orthogonal and

P1 = |χ1〉〈χ1| = 1

4
(cos2 β(1+ σ3)⊗ (1+ σ3)

+ 2 cosβ sinβ(σ1⊗ σ1− σ2⊗ σ2)+ sin2 β(1− σ3)⊗ (1− σ3))

= ρ(−F2 cos 2βe3, cos 2βe3,−F2
(

sin 2β
(
I − Ee3

)+ Ee3

)) = Pcos 2βe3,F2

P2 = |χ2〉〈χ2| = 1

4
(cos2 β(1+ σ3)⊗ (1− σ3)

+ 2 cosβ sinβ(σ1⊗ σ1+ σ2⊗ σ2)+ sin2 β(1− σ3)⊗ (1+ σ3))

= ρ( cos 2βe3,− cos 2βe3, diag(sin 2β, sin 2β,−1)

= ρ(−F3(− cos 2βe3),− cos 2βe3,−F3
(

sin 2β
(
I − Ee3

)+ Ee3

))
= P− cos 2βe3,F3

From these formulae we see thatP1, P2 ∈ Pξ , with ξ = sin 2β and thus (for the
given range ofβ) both pure states are nonseparable.

Now for 0≤ p ≤ 1 consider the state

ρ = (pP1+ (1− p)P2)

= ρ(cos 2βe3, (2p− 1) cos 2βe3, diag(sin 2β, (1− 2p) sin 2β, 2p− 1)

whose spectrum is given by spρ = (0, p, 1− p). Note that

detT = −(1− 2p)2 sin2 2β

which is negative for the given range ofβ except forp = 1
2. Thus we may put

ε = −1. To write down a canonical form forρ we have to distinguish four cases;

Case 1: 0≤ p ≤ 1
2(1− sin 2β)

ρ(1) = ρ(cos 2βe1,−(1− 2p) cos 2βe1,−D1)
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whereD1 = diag((1− 2p), sin 2β, (1− 2p) sin 2β)

Case 2: 1
2(1− sin 2β) ≤ p ≤ 1

2

ρ(2) = ρ(cos 2βe2,−(1− 2p) cos 2βe2,−D2)

whereD2 = diag(sin 2β, (1− 2p), (1− 2p) sin 2β)

Case 3:

ρ(3) = ρ(cos 2βe2,−(2p− 1) cos 2βe2,−D3)

whereD3 = diag(sin 2β, (2p− 1), (2p− 1) sin 2β)ρ

Case 4:

ρ(4) = ρ(− cos 2βe1, (2p− 1) cos 2βe1,−D4)

whereD4 = diag((2p− 1), sin 2β, (2p− 1) sin 2β).
To investigate ifρmds or ρ is separable it suffices to consider the matrix of

ρ̂(1) = ρ(cos 2βe1, (1− 2p)cos2βe1, D1)

relative to the Bell basis. It is easily computed as [̂ρ(1)]φ =

1

2
(p− (1− p) sin 2β) i

p

2
cos 2β 0 0

−i
p

2
cos 2β

1

2
(p+ (1− p) sin 2β) 0 0

0 0
1

2
((1− p)− p sin 2β) −i

1− p

2
cos 2β

0 0 i
1− p

2
cos 2β

1

2
((1− p)+ p sin 2β



The eigenvalues of̂ρmds are the diagonal entries of this matrix.ρmds is separable
iff they are all nonnegative, that is, iffsin 2β

1+sin 2β ≤ p ≤ 1
1+sin 2β . For example if

β = π/12ρmds is separable for any value ofp ∈ [ 1
3, 2

3]. What aboutρ itself? For
the separability ofρ it is necessary and sufficient that the smallest eigenvalueλ̂1

of ρ̂ is nonnegative.̂λ1 is given by the formula

2λ̂1 =


p−

√
p2+ (1− 2p) sin2 2β if 0 ≤ p ≤ 1

2
1− p−

√
(1− p)2+ (2p− 1) sin2 2β if

1

2
≤ p ≤ 1

an expression that is nonnegative iffp = 1
2. Thus unlessp = 1/2,ρ isnotseparable

and introducing the auxiliary function

h(p, β) =
√

p2+ (1− 2p) sin2 2β − p
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theconcurrenceof ρ is given by

ξ (ρ) =


h(p, β) if 0 ≤ p ≤ 1

2
h(1− p, β) if

1

2
≤ p ≤ 1

For p = 1
2ξ (ρ) = h( 1

2, β) = 0 and thusρ becomes separable. The same conclusion
can be reached by looking at the explicit formula forρ in this special case:ρ =
ρ(cos 2βe3, 0, diag(sin 2β, 0, 0)) and by invoking Corollary 5.3 or by directly
noticing that

ρ ∼ ρ(cos 2βF3e3, 0, F3 diag(sin 2β, 0, 0))= ρ(cos 2βe3, 0,

−diag(sin 2β, 0, 0))= ρ̂

To summarize,ρ is separable iff p= 1
2; if β 6= π

4 thenρmds 6= ρ andρmds is
separable for all p∈ [ sin 2β

1+sin 2β , 1
1+sin 2β ].

Forβ = π/12 and forβ = π
4 ρ is separable iffp = 1

2. Forβ = π
4 ρ

mds= ρ
whereas forβ = π/12ρmds 6= ρ andρmds is separable forp ∈ [ 1

3, 2
3

]
.

(2) Letρ = ρ(r , s, 0). Thenρ is already in canonical form and the commutant
group G and the invariance groupG′ of ρ both coincide with the full rotation
groupSO(3). Thereforeρ ∼ ρ ′ = ρ(‖r‖e3, ‖s‖e3, 0). The matrix ofρ ′ relative to
the standard basis is diagonal and the spectrum ofρ is given by

spρ = {1+ ‖r‖ + ‖s‖, 1+ ‖r‖ − ‖s‖, 1− ‖r‖ + ‖s‖, 1− ‖r‖ − ‖s‖}

Henceρ is a state iff‖r‖ + ‖s‖ ≤ 1.
The state is separable, which can be seen directly, sinceρ ′ ∼ ρ(‖r‖e3,−

‖s‖e3, 0) or by invoking Corollary 5.5 (See Fig. 1).

10. SOME APPLICATION TO PHYSICS

In this last section we assume that the qubits are realized by spin-1/2 particles.
We start with certain properties of physical significance that a nonseparable state
of a pair of qubits necessarily possesses.

Theorem 10.1. Let ρ = ρ(r , s, T) be a state of a pair of qubits that is not a
product of two one-particle states in which one or both factors are pure states.
Then the maps f and g defined on the unit sphere S2 by

f (x) = r + Tx
1+ s · x , x ∈ S2 (10.1)
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Fig. 1. Concurrence ofρ as as function ofp for β = π/12 andβ = π/4.

and

g(x) = s+ T∗x
1+ r · x , x ∈ S2 (10.2)

are well-defined and they map S2 into B3. In the case whereρ is pure f and g
map the unit sphere S2 bijectively onto itself. In fact lettingτ denote the antipodal
mapτ (x) = −x, x ∈ S2, τ ◦ g ◦ τ is the inverse of f andτ ◦ f ◦ τ is the inverse
of g.

Proof: By Theorem 7.2 the hypothesis of the theorem is equivalent to‖r‖ < 1 &
‖s‖ < 1, which implies that for allx ∈ S2 1+ s · x ≥ 1− ‖s‖ > 0 and 1+ r · x ≥
1− ‖r‖ > 0, so thatf andg are well defined.

Now assume thatρ = ρ(r , s, T) is a pure state and letx ∈ S2. Then by
Eqs. (4.8), (4.9), (4.11), and (4.12)

‖r + Tx‖2− (1+ s · x)2 = ‖r‖2− 1+ 2(T∗r − s) · x+ x∗(T∗T − | s >< s|)x
= ‖s‖2− 1− detT‖x‖2 = (‖s‖2− 1)(1− ‖x‖2) = 0
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which shows thatf mapsS2 into itself. In a similar way, using Eq. (4.10) one proves
thatg mapsS2 into itself. One easily verifies, using Eqs. (4.8), (4.9), (4.10), and
(4.11), that the mapsf ◦ τ andg ◦ τ are inverses of each other.

Finally letρ = ρ(r , s, T) be an arbitrary state and let

ρ(r , s, T) =
4∑

k=1

wkρ(r k, sk, Tk)

be its spectral resolution. Then forx ∈ S2

‖r + Tx‖ ≤
4∑

k=1

wk‖r k + Tkx‖ ≤
4∑

k=1

wk(1+ sk · x) = (1+ s · x)

which shows thatf mapsS2 into B3. By an analogous argument one shows that
g also mapsS2 into B3. ¤

Suppose we have a pair of spin-1/2 particles prepared into a stateρ = ρ(r , s, T).

Question1: In what state are the individual constituents of the pair?

Answer: Each constituent particle is in the respectivereduced stateas defined
by Eqs. (3.6) and (3.7).

In the special case whereρ has been prepared into a pure state of the mds type
(r = s= 0) we have a well-known paradox: Although the pair is in a state of maxi-
mal information the individual constituents are in a state of minimal information
(in a state of maximal disorder).

Question2: What is the probability that a measurement of the observable
1⊗ a · σ , wherea is a unit vector, yields outcome+1? Keeping in mind that
we are dealing with a pair of spin-1/2 particles the question can be rephrased.
Suppose we measure on particle 2 the component of the spin vector in directiona
by performing a Stern–Gerlach experiment, what is the probability that the particle
has its spin (vector) “up,” that is, aligned with the directiona?

Answer: The probability is

〈ρ , 1⊗ ρ(a)〉 = 〈ρ2, ρ(a)〉 = 〈ρ(s), ρ(a)〉 = 1

2
(1+ s · a)

Question3: Suppose the outcome of the measurement is actually+1, what
state do we now assign to the pair of particles?
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Answer: By the von Neumann projection postulate the state after a measure-
ment of1⊗ a · σ with outcome+1 is given by

ρ ′ = 2

1+ s · a(1⊗ ρ(a))ρ(1⊗ ρ(a)) = 1

2(1+ s · a)

×
(

1⊗ ρ(a)+ r · σ ⊗ ρ(a)+ 1⊗ ρ(a)(s · σ )ρ(a)

+
3∑

j=1

3∑
k=1

t jk(σ j ⊗ ρ(a)σkρ(a)

)

= 1

2

(
1+ (r + Ta) · σ

1+ s · a
)
⊗ ρ(a) = ρ( f (a))⊗ ρ(a),

where f is defined by (10.1). Physically this means that the two spin-1/2 particles
are now disentangled. The second particle is in the pure stateρ(a) with its spin
aligned with the directiona, whereas the first particle is in the stateρ( f (a)), which
in general is amixed state. However, in the special case where the original stateρ

of the pair waspure, it follows from Theorem 10.1 that the first particle too is in a
pure state, having its spin vector aligned with the directionf (a). For example, if
ρ = P0,R = ρ(0, 0,−R) was a pure state of themds type, then after a measurement
of the observable1⊗ a · σ yielding outcome+1, the first particle will be in the
pure stateρ(−Ra); in particular if the original stateρ of the pair was thesinglet
stateρ = P0 = P0, I = ρ(0, 0,−I ), then after the measurement the first particle
will have its spin vector aligned with the opposite direction−a.

Similarly if we measurea · σ ⊗ 1 and find the outcome+1, after the mea-
surement the system will be in the product stateρ(a)⊗ ρ(g(a)) whereg is defined
by (10.2).

To not unduly interrupt the flow of the argument we relegated a few results
and their proofs into two appendices:

APPENDIX A: SOME GROUP-THEORETICAL RESULTS

We start with an elementary group-theoretical result.

Proposition A.1. Let G be a group and let G′ be a normal subgroup. Then the
set

H := {(g1, g2) ∈ G× G | g1 ≡ g2 modG′}
is a subgroup of G× G.
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Proof: Let (g1, g2), (h1, h2) ∈ H . Fromg1 ≡ g2 modG′ we getg1h−1
1 ≡ g2h−1

1
modG′. But sinceh1 ≡ h2 modG′ we have

g2h−1
1 = g2h−1

1 h2h−1
2 ≡ g2h−1

2 modG′

Thus by transitivityg1h−1
1 ≡ g2h−1

2 modG′, which proves that

(g1, g2) · (h1, h2)−1 ∈ H ¤

The next result pertains to the stabilizer of a positive semidefinite matrix

Proposition A.2. Let n be a positive integer and let D= diag(µ1, µ2, . . . , µn)
be a diagonal matrix with nonnegative entries in descending orderµ1 ≥ µ2 ≥
. . . µn ≥ 0 and let H be the stabilizer of D, that is, the group

HD =
{
(R1, R2) ∈ SO(3)× SO(3) | R1DR∗2 = D

}
Let G be the group of all rotations that commute with D:

G := {R ∈ SO(n) | DR= DR}
and let G′ be the group of all rotations leaving D fixed by multiplication from the
left:

G′ := {R ∈ SO(n) | RD= D}
Then

(1) G′ is a normal subgroup of G.
(2) HD = {(R1, R2) ∈ G× G | R1 ≡ R2 modG′}

Proof: (1) SupposeR′ ∈ G′. Taking the transpose of the equationR′D = D we
obtainDR′∗ = D which by multiplication byR′ from the right givesD = DR′.
ThusR′ ∈ G andG′ is a subgroup ofG. Now for R ∈ G we have

RR′R∗D = RR′DR∗ = RDR∗ = D

and thusDR′R∗ ∈ G′, showing thatG′ is normal inG.
(2) Suppose first that (R1, R2) ∈ HD. Then R1D = DR2 holds. Taking the

transpose we obtainDR∗1 = R∗2 D. Multiplication of this equation from the left by
R2 and from the right byR1 givesR2D = DR1. Multiplication of this equation from
left by D givesDR2D = D2R1. But by the original equationDR2D = R1D2. Thus
R1D2 = D2R1, which impliesR1 ∈ G. Similarly R2 ∈ G. Now the original equa-
tion can be rewritten asR∗2 R1D = D, which meansR1 ≡ R2 modG′. Conversely
suppose thatR1, R2 ∈ G andR1 ≡ R2 modG′. ThenR1DR∗2 = R1R∗2 D = D and
therefore (R1, R2) ∈ HD. ¤
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Theorem A.3. Let V be a finite dimensional real inner product space. Let GL(V)
be the group of all invertible linear transformations of V endowed with usual
topology (i.e., the topology induced by the operator norm). Let G be a compact
subgroup of GL(V) and let

Gx = {g(x) | g ∈ G}
be the orbit of G determined byx ∈ V . Then the set of extreme points of the convex
hull S= convGx of Gx coincides with Gx.

Proof: As the continuous image of a compact set,Gx is compact. It follows
that S= convGx is compact. (Theorem 2.8 in Brønsted, 1982) Hence the set of
extreme points ofS is contained inGx. (Theorem 5.10 in Brønsted, 1982) But
sinceS is invariant underG the same must be true for the set of extreme points:
Every point inGx is extreme. ¤

APPENDIX B: SOME APPLICATIONS OF THE THEORY
OF CONVEX CONES

We start with the proposition that a stateρ = ρ(r , s, T) is separable iff
ρ̂ = ρ(r ,−s,−T) is also a state. We have seen that the condition is necessary
(Lemma 5.1). We want to show that the condition is also sufficient. For this pur-
pose we need to invoke some elementary results from the theory of convex cones. A
good source of this material is Hilgertet al.(1989). We first introduce the (closed)
convex cone

K =
⋃
γ≥0

γS0

generated by the setS0 of all separable states within the real vector spaceH4 of
all hermitian operators and its dual cone:

K̃ = {h ∈ H4 | ∀h′ ∈ K 〈h, h′〉 ≥ 0}
We have the inclusionsK ⊂ H+4 ⊂ K̃ andK is generating, that is,K −K = H4,
an assertion that follows from (3.3) and the equations

1= ρ(e1)+ ρ(−e1)

σk = ρ(ek)− ρ(−ek), k = 1, 2, 3,

where (e1, e2, e3) denotes the standard basis inIR3. The statement thatK is generat-
ing is equivalent to the statement thatK̃ is aproper cone, that is, it has the property
(−K̃) ∩ K̃ = {0} (cf. Hilgert et al. (1989), Proposition I.1.7). We first focus our
attention on the dual conẽK. LetL(H2) be the space of all linear transformations
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ofH2. By endowingL(H2) with the trace inner product

〈3,3′〉 = trace(3∗3′), 3,3′ ∈ L(H2),

where3∗ denotes the adjoint of3, L(H2) becomes aninner product space. A
linear transformation3 of L2 is said to bepositiveprovided3 leaves the positive
coneH+2 ⊂ H2 invariant. The setL(H2)+ of all positive linear transformations
constitute a convex cone withinL(H2), which can be used to characterizẽK. In
fact we have

Theorem B.1. LetJ : L(H2)→ H4 = H2⊗H2 be the linear map defined by

J (3) = 2(1⊗3)P0, 3 ∈ L(H2),

where1 denotes the identity transformation ofH2 and P0 = ρ(0, 0,−I ) is the
singlet state. ThenJ is an isometry ontoH4 and

K̃ = J (L(H2)+).

Proof: Throughout this proof we denote the 2× 2 identity matrix byσ0, reserving
the symbol1 for the identity transformation ofH2.

(1) Let3 jk ∈ L(H2), j , k = 0, 1, 2, 3 be the transition operators between the
members of the orthonormal basis (2.7). Explicitly3 jk is defined by

3 jk(a) = 1

2
〈σk, a〉σ j , a ∈ H2, j , k = 0, 1, 2, 3.

By linear algebra generalities these transition operators constitute an orthonormal
basis inL(H2). It is easily verified that the imagesJ (3 jk) are given by the formulas

J (3 j 0) = 1

2
(σ0⊗ σ j ), j = 0, 1, 2, 3

J (3 jk) = −1

2
(σk ⊗ σ j ), j = 0, 1, 2, 3 k = 1, 2, 3,

and hence they constitute an orthonormal basis inH4. This proves thatJ is an
isometry ontoH4.

(2) The remainder of the proof rests on the formula

∀xy ∈ S2 : 〈3(ρ(−x)), ρ(y)〉 = 〈ρ(x)⊗ ρ(y), J (3)〉 (B.1)

which holds for any linear transformation3 ofH2. For the proof of (B.1) we apply
3 to the expression

ρ(−x) = 1

2

(
〈ρ(x), σ0〉σ0−

3∑
k=1

〈ρ(x), σk〉σk

)
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and then form the inner product withρ(y). We obtain

〈3(ρ(−x)), ρ(y)〉 = 1

2

(
〈ρ(x), σ0〉〈3(σ0), ρ(y)〉 −

3∑
k=1

〈ρ(x), σk〉〈3(σk), ρ(y)〉
)

= 1

2

〈
ρ(x)⊗ ρ(y), σ0⊗3(σ0)−

3∑
k=1

σk ⊗3(σk)

〉
= 2〈ρ(x)⊗ ρ(y), (1⊗3)P0〉 = 〈ρ(x)⊗ ρ(y), J (3)〉.

(3) Now suppose that3 ∈ L(H2)+. Then the left hand side of (B.1) is nonneg-
ative for allx, y ∈ S2. Hence the same is true for the right hand side:J (3) ∈ K̃ .

Conversely suppose thath ∈ K̃ and let3 = J −1(h). Then the right hand side
of (B.1) is nonnegative for allx, y ∈ S2. Hence the same is true for the left hand
side, which implies that3 ∈ L(H2)+. ¤

Lemma B.2. Every positive linear map3 : H2→ H2 has the form3 = λ+
θλ′, whereλ and λ′ are completely positive andθ denotes the positive linear
involution ofH2 (time reversal) defined by

θ (h(γ , a)) = h(γ ,−a), h ∈ H2.

Proof: It is well-known that every positive linear transformation ofH2 has the
form

3 = λ+ τλ′′ (B.2)

whereλandλ′′ are completely positive andτ ∈ L(H2)+ is the transpositionτ (h) =
ht ∈ H2 (cf. Woronowicz, 1976). In terms of the representation (3.1) ofh the
transposition can be expressed as

τ (h(γ , r )) = h(γ , r )t = h(γ , Sr ), h ∈ H2

whereSstands for the reflection at the (1, 3)-coordinate plane. Hence

τ (h(γ , r )) = h(γ , Sr ) = h(γ , F2F2Sr ) = h(γ ,−F2r ) = θ (h(γ , F2r ))

= θ(u0h(γ , r )u∗0
)

whereu0 ∈ U1 is defined by (2.2). In the last part of the equation we use Formula
(3.2) in combination with the easily verifiable fact thatR(u0) = F2. It follows that
τ = θ ◦ ũ0, wherẽu0 stands for the conjugation byu0. Inserting this expression
into (B.2) we obtain the desired decomposition withλ′ = ũ0 ◦ λ′′. ¤

Theorem B.3.

K̃ = H+4 + Ĥ+4 (B.3)
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Proof: SinceK ⊂ H+4 and by Lemma 5.1,K = K̂ ⊂ Ĥ+4 , and the conesH+4
andĤ+4 are self-dual, we obtainH+4 + Ĥ+4 ⊂ K̃. To prove the opposite inclusion
suppose thath ∈ K̃. Then by Theorem B.1h can be written as

h = (1⊗3)P0

for some3 ∈ L(H2)+. Now applying Lemma B.2 we obtain

h = (1⊗3)P0 = (1⊗ λ)P0+ (1⊗ θλ′)P0 = (1⊗ λ)P0+ (1⊗̂λ′)P0

whereλ, λ′ :M2→M2 are completely positive maps. This implies that (1⊗ λ)
P0, (1⊗ λ′)P0 ∈ H+0 and thereforeh ∈ H+4 + Ĥ+4 . ¤

Taking the dual of Eq. (B.3) and keeping in mind thatH+4 andĤ+4 are self-dual,
we obtain, using the bipolar theorem (cf. Propositions I.1.4 and I.1.6 in Hilgert
et al., 1989).

Corollary B.4.

K = H+4 ∩ Ĥ+4
Corollary B.5. Letρ = ρ(r , s, T) be a state such that alsôρ = ρ(r ,−s,−T) is
a state. Thenρ is separable.
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